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T H R E E NOTES ON T H E QUANTUM THEORY OF 
APERIODIC EFFECTS 

BY J. R. OPPENHEIMER* 

ABSTRACT 

In Section 1 it is shown that the normalization of the characteristic functions 
corresponding to a continuous spectrum, which has been introduced by Hellinger 
and Weyl, satisfies the requirements of the 5-normalization of the Dirac-Jordan 
transformation theory. It is further shown that this normalization makes the flux 
to and from infinity of systems for which an integral of motion (3 lies in the little 
range A/3' equal to 

In Section 2 the condition for the validity of classical mechanics in the form grad 
X< < 1 , where X is the instantaneous wave length X= (h/2ir)[2M(E — U)]~xl2, is applied 
to establish Rutherford's formula for the scattering of a-particles. 

In Section 3 a method is developed for computing the transition probabilities 
between states of the same energy, and which are represented by almost orthogonal 
eigenfunctions. The theory is applied to the ionization of hydrogen atoms in a 
constant electric field. The period of ionization in a field of 1 vclt per cm is 10lol° 
sec. The bearing of such transitions on the problem of metallic conduction is dis­
cussed. 

THE normalization of continuous spectra has been formulated mathemati­
cally by Hellinger and Weyl; and it has been shown that this may be 

applied to a large class of quantum-mechanical problems without in­
consistency.1 The problem can, however, be treated a good deal more simply 
and generally. It may be formulated as follows: The ^-normalization 
required by the Dirac-Jordan transformation theory2 

X 
X 

{ a ' / j 8 ' } < * / 3 ' { j 8 ' / a " } = a ( a ' - a " ) ( l a ) 

{/3y«'W{ay/3"}=SG8'- |8") (lb) 

means 
1 if a lies in Ac/ C C i * • f ^ 1 it a lies in Aa" 

&*" {a>/?}<$'{&/a"\ = . (2a) 
J Aa" •)B 0 otherwise 

r r t , , 1 if 0' lies in A0" 
# " {p'/a'}da'{a'/$"}= P , (2b) 

«/A/3" J A 0 otherwise 

* National Research Fellow. 
1 See J. R. Oppenheimer, Zeits. f. Physik 41, 268 (1927); the method of this paper is an 

extension of that outlined in the footnote on page 270. The necessary references are given 
in this paper. 

2 A is the range of characteristic values of a, etc. {a'/(3'} is the transformation function 
from a to 13, with arguments a.' and (3\ Cf. P. A. M. Dirac. Proc. Roy Soc. A113, 621 (1927) 
who uses (a'//?')• 
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Now the integrals in (1) and the inner integrals in (2) do not converge, 
so that the normalization in its present form is meaningless. We obtain 
Weyl's normalization if we interchange the order of integration in (2a), (2b); 
and the transformation functions so normalized have all the required 
properties. In particular the probabilities computed from them are invariant 
under a point-transformation of the form /3/ =/(/3'); ot\ = g(af), i e > changes 
of scale.3 

The physical interpretation of (1) is analogous to that of the normaliza­
tion of point spectra: the probability that the system has simultaneously 
the values /3', ]3" is zero if f3'=^f3"; the total probability that it has a f3 near 
f3' is unity. But in aperiodic phenomena, like the photoelectric effect, or a 
collision problem, what one observes is not the total number of particles 
somewhere in the infinite configuration space which satisfy a given con­
dition, but their flux to or from infinity: the number of particles entering 
or leaving the system from "infinity" per unit time. That, when a or j8, 
say j8, is a constant of integration,4 such an interpretation of (1) must be 
possible, is suggested by the following argument: Consider a system initially 
in a discrete state, and subject to a perturbation which dissociates it. If 
one uses the characteristic functions normalized by (2) one can find the 
probability of a system leaving the discrete state per unit time for a given 
range A/3'; this must also be equal to the number going to infinity per unit 
time in the same range, so that the normalization (2) may be regarded as 
determining the flux to infinity for the state /3'. For a special kind of charac­
teristic function this was verified in the previous paper, but it can, of course, 
be established quite generally. In this paper we shall show (a) that Weyl's 
form of (2) enables one to obtain the continuous matrices one needs, e.g., 
for the perturbation theory; and (b) that it makes the flux to and the flux 
from infinity in a range A/3' equal to (i/h)(dE/dpf)A^, in accordance with 
the requirements of quantum statistics. The method provides an analytical 
rule for the normalization which is considerably simpler than Weyl's. 

The Weyl-Hellinger form for (2b) is 

N= f Ai0(/3 /)^ /A2©t(^)=iA2i3 / (260 
J A 

where 

A1@t(/3')= f # ' { « 7 0 ' } 

AS(n= f #"{/3 '7« '} 

and where iA2j3' is the common part of Ai/3' and A2/3". From this follows 
(a) that N = 0if A$' and Ai/3" do not overlap, and (b) that 

3 The proof that the normalized transformation functions have this property is given 
by P. Jordan, Zeits. f. Physik 41. 797 (1927). 

4 The normalization (2), (3) is, of course, applicable even when this is not the case. 
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N/Ai3'~l (2b") 

forA^Ag/S' . '^A/S' . 
This last form (2b"): 

f {a7j8'}rfa^0t(/3')=*l (when & lies in A/3') (3) 

is just the condition that the matrix components of a function F(a,)1 which 
are defined by 

F{ct'){a'/ff)= [F(fi'&")d@i(fi") (3a) 
J B 

may be given by 

J W ' ) = f {a'/DdcSFWiP'/a'} . . (3b) 
JA 

For (3a) yields 

f {r/a'}da'F(a'){a'/P'}= f {&"/a'}da' f F(0'(*")<&t(JJ") 
JA J A JB >A 

Qfofff » W " ) by (3) . 
(3c) 

On the other hand we may derive this result, and thus (3), by a limiting 
process. If we take the domain A of a bounded ( — a^a'S + a ) , and make 
|a/j3'} = { — a/jS'}, the characteristic values of /3 become discrete: 

F(a'){a'/ /S'} = ZFW'MP") {/S'V «'} (3d) 

where 

whence 

f+V"/«'}d«W) {a'//5'} = P {?"/«'}*€/ ZFW'Mn {fi"/a?}. (3/) 
J—a J—a 0" 

Now the F(fiffi") defined by (3d) is always given by (3b). But if we write 
A0(j8/)=o-(j8/){«//i8/} and make a->oo we get from (3d), (3e) and (3f) just 
(3) and (3a) while (3b) remains true. 

We may apply (3)-(3b) to find the transition probabilities induced in 
a system with continuous spectrum by an arbitrary perturbation. Let the 
system have initially the energy EQ — hi>o and the wave function {EQ/a'}, 
and let the perturbation 

r+0° 
V{a't)= I V,(a')e2™'dv (4a) 

t /_oo 
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set in at time T0. The perturbed wave function after a time T is then, to 
a first approximation5 

{Eo/a'je^t-Vwi/h) I dp I dp' I dtVv(E$') {$'/ a'je2^^* . (4/3) 

with ^ = (̂/3;)—^o • 

From this we find, in the usual manner, for the probability that the system 
is in the range A/3' at the time T 

(4TT2//Z2) C da'l f dv f djSTr(Eo/3'){/3'/a'} f dteMW (4) 

By (3) this becomes 

+°° r T 12 

(4a) (4TT2/^2) [dpi f dvVv{E$f) f dte*riw 
•/A/5' I »/-oo */r0 'A0-

which is invariant under transformations of the form /3i' =/(/3/), since, by(3b) 
the [Fv^ojS') ]2 are contravanant to /3'. If we now make Vv — 0 except inside 
the range AJ>(/3') and evaluate (4a) in the usual manner we find that outside 
AjS7 the number of systems does not grow, and that the total number within 
the range is for a large T—TQ 

(4TT2A2) I V9{E<fi') I V A K / W - TO). (46) 

This makes the rate at which systems enter the range 

(4*a/*2) | V,(E<fi') |2A/3'AK#'). (4c) 

Now we can, if we make T—T0 very large, evaluate (4) by carrying out 
the integration with respect to v first. Using Fourier's theorem we find 
instead of (4b) 

4*7*2 | V,(E<fi') | V (4d) 

for infinite T and T0. Thus, in the steady state when there are (4d) systems 
in the range A/3', the number entering the range per unit time is (4c). 

We may expect, therefore, that the normalization (3) corresponds to 
making the number of particles leaving the system to infinity per unit time 
equal to Av for the range. We shall proceed to show this. 

Let us limit ourselves at first to a single degree of freedom and let us 
suppose that the range of a is not quite infinite, so that some function of 
j3', say J(J3'-)/h, takes only integral values. We can then write in place of (3) 

f {«'/P'}da' f ^"{/3"/«'}=l (5a) 
JA JA/S ' 

6 Cf. E. Schroedinger, Ann. der Physik 81, 117 (1926) Eq. 16. V(E$') is the matrix com­
ponent of V corresponding to the transition between the states E~EQ and j8=j8\ 
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where /3' lies in A/3' and where A/3' is a /3' cell. T h e integral m a y be regarded 
as an integral taken over the cell, or as one to which only the integral values 
of J/h cont r ibute . We may write (5a) 

w = (l/A)(d//d/3') (5b) 

where 

« = (1/A) f da' f {a'/P'}dJ(p'){p'/«'} 
JA J A/3' 

is the to ta l probabi l i ty of finding the system in a /3' cell. Set t ing /3' = J/h 
makes the probabi l i ty uniform in phase space, b u t the range of integrat ion 
A/3' in (5a) does not vanish in the limit, and the limiting process is thus 
ambiguous . When we have | /3 ' / a ' } ^Ce2™*3'"', however, this form of (5b) 
gives us C=l; and in this case WeyPs normalizat ion means t h a t the mean 
densi ty per /3' is assymptot ical ly uni ty . 

Now if we have dJ/dfi'—*<x>, then (5a) goes into (3) when we make A—>co ; 
so t h a t if we can in terpre t (5b) we shall know wha t (3) means . A simple 
way of doing this we get by set t ing 

dJ/dp'=h(dE/dJ)-1 

and using 

w = w(/)=w(/30 = d £ / a / 

which is quantum-mechanica l ly t rue if w is canonically conjugate to J". 
Then , 

coto= 1 (5 c) 

for 

P = E/h (5d) 

Now TO)6) is the flux across a surface o) = const, with /3 value equal to /3' ; 
and se t t ing /3' =E/h in (3) makes cocb = 1. Bu t we m a y show t h a t rco is equal 
to the flux to (or from) infinity int roduced above and given in te rms of the 
wave functions6 by 

L-OSO = 2 > 0 = V 2 « » l [{«7|3'} (9/da') {/3'/«'} ] 

For 23 (09 is a cons tan t : i t follows from the fact t h a t the t ransformation 
equat ion for | a ' / /3 ' } is self-adjoint t h a t J^a,(ft') ~ 2 a - ( 0 9 = 0 - Fur ther , if 
0 ' is an integral of motion, uto is a cons tan t independent of co. Hence if 
X] =£d> is t rue a t one point it is generally t rue . Bu t we can make the forces 
vanish a t some point a wi thout al tering the motion appreciably; and then 
we have co=f(a) so t h a t the flux across the co = co surface is equal to t h a t 
across a = a surface. 

6 This quantity was first introduced by M. Born,. Zeits. f. Physik. 40, 167 (1926), E. -
Schroedinger Ann. d. Physik. 81, 109 (1926) and W. Gordon, Zeits. f. Physik. 40, 117 (1926). 
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Hence setting (3f = E/k makes ^2W = 1 and the flux to infinity in a range 
A/3' becomes, in this case 

. D-oAjS'^AE/A (6) 

Since X^AjS' does not depend upon the choice of j3' this Eq. (6) holds gener­
ally, as was to be proved. 

With problems of several degrees of freedom the coordinate af maybe 
only half open ( a ^ o / ^ °o instead of °o SOL' S oo), and in this case {f3'/af} 
will be assymptotically given by two waves, one inward, and one outward, 
of equal amplitude. We then have X)«,= 0 but ^ 0 0 = X ^ ^ ^ t o represent 
the two waves. One finds, in this case, that one must set Yl^—Yl^ — 1 
for fi' =E/h, so that in this case also both ingoing and outgoing waves have 
unit intensity per E/h. One can understand this most easily as follows: 
the transformation from a to co is no longer one-valued so that, to any point 
in the (aJ) space there correspond two points in the (co/) phase space. The 
Weyl condition thus gives double the density in the (aJ) space that it would 
for an open coordinate. (This enters analytically in the integral (3) which 
goes only from a to oo.) 

One further point may perhaps be mentioned. In certain experiments, 
e.g., the photoelectric effect one may expect the flux inward from infinity 
to vanish, and only the flux outward to count: an atom emits electrons 
under the influence of light. In spite of this it is not justified to use for the 
aperiodic characteristic functions merely an outgoing wave. Analytically 
one sees this because the outgoing wave alone has a singularity at the origin. 
Physically it follows from the fact that in spectroscopic problems one specifies 
the energy of the hyperbolic orbit exactly; the phase is thus quite un­
determined and one cannot say to which branch of the hyperbola (ingoing or 
outgoing) the electron will jump. In general each electron goes on both, 
since the orbit is closed at infinity. 

When there are several continuous integrals /3i one may set 

Ef = l (6a) 
if one chooses 

A^=(l/h)(dE/dp/)^Ap/ i^j (6b) 

This gives a convenient rule, which is in practice easier to apply than (3), 
and which depends, as to be expected, only on the assymptotic behavior 
of the {a//j3'}. In conclusion we may note that with (6b) the flux is given by 

fA0(/3')^'A0tO3') (Q) 
J A 

and that the absorption coefficient for light is given by the square of the 
modulus of the matrix component of the perturbing energy.7 

7 One may regard the analysis of this section as a method of interpreting stationary 
solutions of the wave equation, in aperiodic problems, like collisions or photo-ionization. Cf. 
P. A. M. Dirac, Proc. Roy. Soc. A114, 256 (1927). 
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2. One may expect a motion of periodic systems to approach that given 
by the classical quantum theory when the action per cycle is large compared 
with h. Kramers8 has shown that this condition makes the number of nodes 
between the limits of libration large, and has applied the approximation 
to show that half quantum numbers are better than integers. From Kramers' 
argument it appears that the essential condition for the validity of classical 
mechanics is that the number of nodes of the eigen-function should be large 
in a region in which the potential energy is sensibly constant. This condition, 
unlike that on the action per cycle, may be extended to aperiodic motions; 
in this paragraph we shall show that it enables one very simply to determine 
whether the classical formulae are valid for any problem that is susceptible 
of a quantum mechanical solution. The method will be applied to the 
scattering of an a-particle by a nucleus. 

If one sets e2iriS/h in the wave equation one obtains 

(h/2iri)A2S+(AS)2+2M(E- V) = 0 (1) 

The classical S satisfies 

(AS)2+2M(E-U) = 0 (la) 

so that 

{E/x}ci = exp(27ri(-2Myt2/ti) fds(E-U)1!2 (2) 

These solutions (2) each correspond to a uniform distribution of particles 
when E> U, and a rapid exponential drop at the edge of the geometrical 
shadow. Because of the interference of the {E/x}'s, however, this does not 
represent the distribution for any given experimental arrangement: e.g., one 
obtains the classical deflection pattern at an obstacle by combining the 
solutions (2) so as to give a plane incident wave. 

Now when \(h/2ir)A2S(AS)~2\ is very small, 5 and therefore, {E/x}, 
will not have to be much modified to give the quantum mechanical solution; 
in this case, therefore, the classical formulae may be expected to retain an 
approximate validity. Qualitatively, we see that this condition can always 
be satisfied by taking S/h large enough, since (AS)2 is quadratic, A25 linear, 
in S/h. This is the old condition that quantum numbers shall be large, the 
wave-length small. We can make the condition more precise and bring out 
the optical analogy better, if we introduce 

X= (A/2*-) { 2 M ( £ - U)}~1/2 (3) 

as the "wave-length" at a point. The condition that {-E/x} should be given 
approximately by (2) in a region then becomes 

| gradX| < < 1 (4) 

8 H. A. Kramers, Zeits. f. Physik 39, 828 (1926). 
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Now in any physical diffraction problem U will have singularities, and there 
will be points at which (4) will not be satisfied. There will thus be classical 
scattering if (and only if) these regions are immaterial for the diffraction 
pattern; that is, if one can set ?7 = 0 within them without affecting a result 
appreciably. 

As an example of this method we may consider the scattering of fast 
ce-particles by nuclei. Here we have 

U=eie*fr (Q) 

and 

| grad X 

If we make 

r > > eie2, sa;y r = Be^/E 

we may replace (5) by 

r2Ez^>>eie2 

and hence (4) can be satisfied outside of a sphere of radius 

rQ**(ci/E)(eies)
1'*[h*E/8ir*M]1lA 

where A*, is the wave-length at infinity of the incident a-particle. Now the 
scattered wave, for large velocities, is given by 

{E/x}i = ce~ikr J pdp I sm&d#e2iaini(dl2)'C08*-plx 

J o J o 

= c\2e~ikr I fxdjji j sin ftdde21*™2612'™**'11 

J o J o 

If we set U = 0 inside the sphere of radius rQ we get 

{E/x}i' = ck2e~ikr f fidfi f sm#<^2isin2<8/2>-C08*-<< 

so that, as A*,—>0 

{E/x}i'-+{E/x}i 
Hence the region in which (4) is not satisfied is, in the limit v—><x>, immaterial 
so that Rutherford's formula must be expected to hold for this case.9 

The argument may be extended to show that the quantum mechanical 
scattering approaches the classical scattering in the other limiting case, 

9 See P. M. S. Blackett, Proc. Camb. Phil. Soc. 23, Part 6, 1927. J. R. Oppenheimer, 
Zeits. f. Physik 43, 413 (1927). 

\dr\ ~" 2 r2\ r ) \8TT2M) 
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where v—>0. For the wave function drops off exponentially within a sphere 
of radius proportional to v~2, whereas (4) is not satisfied within a sphere of 
radius proportional to y_3/2. Setting v = 0 within this latter sphere does not, 
therefore, in the limit z;—>0, affect the scattering. There is, however, no 
reason to suppose that for intermediate v the classical formulae hold. 

3. If one separates the wave equation for a hydrogen atom in an homo­
geneous electric field in parabolic coordinates, one finds that one of the 
equations has a potential energy which becomes negative^ infinite for 
infinite values of the coordinate. Such an equation has no quadratically 
integrable solutions, and no point spectrum.10 There are thus no stable 
stationary states possible for a hydrogen atom in such a field. 

If one encloses the atom in a large box, periodic motions, of course, 
become possible. If the field is now made very small, the solutions of the 
wave equation are very much like those for the unperturbed atom; but if 
the drop in potential across the box is comparable with the resonance 
potential of the atom this is no longer the case. We must, therefore, conclude 
that, under the customary experimental conditions the characteristic func­
tions found by the perturbation method, which yield the Stark effect, are 
not the stationary solutions of the wave equation, and that they do not 
completely describe the effect of the field. 

The physical interpretation of this result is very simple. If we imagine 
the potential energy U of the electron plotted along the direction of the 
field, we see that it falls from a very high value at one end of the box to a 
very low value at the other; this uniform fall is broken by a sharp drop due 
to the nucleus. On the low potential side of the nucleus there is a maximum, 
sharp inside but gradual outside. If, therefore, we specify the energy of this 
system, we cannot be certain that the electron is in the neighborhood of the 
nucleus; it may also be in the low potential part of the field. If we make 
the box infinite, then it becomes increasingly probable that we shall find the 
electron in this part of the field, and hence the motion becomes aperiodic. 
In the classical theory, however, this situation caused no difficulties; for 
we could specify the other coordinates of the electron (besides the energy), 
and thus make certain that it was near the nucleus; and it could not leave 
this region without getting enough energy to clear the maximum in V. 

We have seen that this is not so in the quantum theory, and that there 
is no stationary state of interest. The electron will not stay indefinitely near 
the nucleus. This suggests the following question: Given the atom at time 
To in, say, its normal state. The field is turned on. What is the probability 
that at a subsequent time T the electron will have left the atom for infinity? 
If T—TQ is big enough, this probability will be indefinitely near to one; but 
we may presume that the rate at which it grows will be very small when 
the field is small. This presumption will be verified. 

We could find the rate of ionization, of course, by computing exactly 
the characteristic function of the atom in the field as a function of the time 
and thus finding the rate at which the probability that the atom is outside 

10 H. Weyl, Math. Ann. 68, 220 (1910). 
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a given sphere abou t the nucleus increases. There is, however, a simpler 
way of answering the question, which makes use of the fact t h a t the two 
unper tu rbed characteris t ic functions, corresponding to the initial energy 
and representing, respectively, the a tom in i ts unper tu rbed normal s ta te , and 
the electron and nucleus flying apa r t under the influence of the field and with 
neglect of their a t t rac t ion , are nearly or thogonal . I t is therefore nearly, b u t 
not qui te , unambiguous to ask whether the electron is bound or whether i t 
is torn loose, since the chance t h a t we might have to answer "bo th" is very 
small . This method of nearly or thogonal character is t ic functions appears 
to be capable of fairly wide applicat ions. W e shall therefore first develop 
the general theory and then apply it to the ionization problem. 

T h e system is initially in a given s ta te of energy E0 = hvo1 and the wave 
function11 \f/o(x) satisfies 

[H+HQ~Eo]Ux) = 0 (1) 

A t the t ime TQ a per turba t ion Hi{x) is in t roduced. Let 

[H+Hl-E1]t,(v1x) = 0 ; E^hvx (2) 

In general Ei~hv\ may be taken cont inuous ; for unless (2) has character is t ic 
values very close to EQ, the effect will not occur. l l a 

We now require t h a t 

| €01 V | 2«W i < < 1, where €0 = C d<nfro(x)fi*(?*x) (3) 

Of course ev=fdT\f/o(x)\[/i*(vx) cannot always be small, since 

f dv\ f dT+Q(x)fi(™)\ = f\^o\2dr=l 

I t is i m p o r t a n t to note t h a t the ^ i ' s are closed with respect to all functions 
analyt ic in the configuration space. 

We m a y accordingly set for the wave function 

f = I a{yt)ypi{vx)e^ivtdv (4) 

T h e initial values of the a?s are 

aO0) = e„ (4a) 

W e can now wri te 

a{vt) =eve
2^v^v)tJrc{vt) 

11 We now write { EQ/X \ =\po(x), etc. 
iia p o r the singular case that (1) and (2) have identical discrete characteristic values, 

see F . Hund, Zeit. p. Physik, 43, 805, 1927. [Note added to proof] 
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So that 

^^foe2™*^ j c(vt)$i(yx)e2*ivtdv (46) 

The wave equation is 

[H+Ho+Hi+Wlirfiid/dfity^O (5) 

Setting (4b) in (5) we get 

(h/2wi) f c(vt)\l/1(vx)e2™tdv+H1M%)e2wiv°t+ f c(vt)H$p1(v%)e2*ivtdv = 0 (6) 

If we expand in terms of the i/'i's and make all the coefficients of (6) vanish, 
we get 

(ih/li^cW-HxiQvy^^t-- f c{v,t)Eo{vfv)e2^,~^tdvf^Q (6a) 

Now in the first order we have by (4a) c(vt) = 0 and therefore 

c(v(t=(-2Ti/h) f H1(0v)e2^i^^tdt (66) 
Jo 

Hence 

\c(yt) |2 = (4TT2)/*2 j Hi(0v) |21 f e2™ <*r-»)tdt |2 (fsc)' 

for the number of systems in the state v at the time T. Only when P^^PO 
does this increase appreciably with T; the total increase in a little region 
about v=v0 we get by integrating (6c) with respect to v: 

AN(T) = ( 4 r 7 # ) | HiiOpo) \2T (7) 

This is only significant, and therefore only accurate, to within a factor of 
the order of e0

2/X)oo (^o). 
Because e0 is so small, Hi(flp0) may be much smaller than HI(0P) for 

some other P. For this reason one cannot be certain that it is sufficient to 
take the first approximation in (6a), since, if one chooses T large enough 
to make the transitions sensibly conserve the energy, as in (7), c{pt) may 
not be very small for some other p.12 From (6a) and (6b) follows, for the 
correction for the cv 

Cy'=:(~4ir2/h2) f dv' f dteW'-"*' f ^V^°-* '>< '#o(^)# i (0 / ) (8) 
J Jo Jo 

12 This second order cascade is important in the theory of dispersion: see P. A. M. Dirac, 
Roy. Soc. Proc, A114, 710 (1927). 
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We may obtain a rough estimate of this, and thus of the error in (7), by the 
following method: 

The only term in (8) that can grow large is 

— f oV * (8a) 
V — VQ V — VQ 

which has a vanishing denominator for >=J> 0 - Now Hi(0vf) is small for 
v'~v0, since otherwise the second approximation is unnecessary, and it 
grows small again for very large v\ since the corresponding wave function 
has more and more nodes in the region in which \[/o differs appreciably from 
zero. There must therefore be some value v for which H^(vfv) H±(V;P) has 
a maximum; only in the neighborhood of v will the integral contribute much 
to (8). If, now, the maximum is so sharp that the integrand of (8a) does 
not change sign within the essential part of the integral, we can estimate13 

the magnitude of the integral if we replace it, in (8a), by 

[l/(v-v0)] ( dv'H,(v,v)E1(0vf) (8b) 

For (8b) is easily evaluated by using 

H0(v'v)= f d<nfri*(vx)HQ(x)fi(v'x) (9a) 

# i ( 0 / ) = f dT'$i*(v'*r)Hi(xM*f) (9b) 

If we now integrate directly with respect to v and use 

( dvryPi(v,x)^(vfx,)-h(x- xf) (9c) 

we get for (8b) 

L-l/fro-PJlHoffiCOvo) UO) 

so that the second order effect may be roughly allowed for by writing 

H1(Ovo)+[l/h(vo-p)Wrfh(Ov0) (10a) 

for Hi(0v0) in (7). Now because e0 is small, HQ will generally be small where 
Hi is large, and conversely, so that the correction (10a) will not be very 
important. I t is for this reason that the approximation introduced is per­
missible; if (10a) differed appreciably from iJi(0*>o) it would be necessary 
to use the accurate expression (8) to find AN(T). 

For the problem of the hydrogen atom in the field we take 

HQ=-e2/ry Hx^-eFz (11) 

13 The method may give a good approximation even when this condition is not fulfilled. 



78 JT. R. OPPENHEIMER 

with the field F along z. T h e normalized solution of (1) for the normal s t a te is 

^o= [ l / ( 7 r a 3 ) 1 / 2 ] e -^= [ l / f r a * ) ! / 2 ] ^ 1 ' ^ ^ 1 7 1 (12) 

in the cylindrical polars z, p, 0 . T h e wave equat ion for ypx{vx) becomes 

A ^ i + ( X + a s ) ^ i = 0 (12a) 

with 

\ = ST2fxv/h = 8w2fxE/h2 ; a = S7r2fxeF/k2 

and can be separated in JS, p, 0 . 
T h e solutions t ake the form 

#(XlX2X3) = e^2*J^(p^m)K{y) (12c) 

here v % is integral , b u t X2 and Xi continuous and 

X = Xi+X2+X3 (12d) 

Fu r the r Jx3 l / 2 is BessePs function of parameter X31/2, and 

7=(2 /3aO(-Xi -c*z ) 3 / 2 (12e) 

Finally 

i T ( 7 ) = T ^ > ( - * T ) (12/) 

where Hyz{2) is a solution of Bessie's equat ion with pa ramete r 1/3, and for 
7 > 0 is the cus tomary HankeFs function of the second kind; because of the 
double-valuedness of y this becomes for imaginary y 

~ n 1 / W 1 / 3 { ( 2 / 3 a ) ( X i + ^ ) 3 / 2 } (12g) 

where Ni/s is N e u m a n n ' s cylinder function. We can thus describe the func­
tion K as follows: for y)>>0 it falls off exponential ly 

K(y)^(2/ir)1/2y~1/6e^if12-y (12 h) 

For 7 = 0 it has the value 2224/3. I t s first zero occurs a t iy~2. Beyond this it 
oscillates with decreasing ampl i tude and period, and for Xi+as)8>0 it is 
given by 

(l/27r)1/2Y-1/6e*[(6T/12)+*] — e-i[(^/w+y] (\2i) 

I t differs from zero chiefly in the region 171 ^ 2. 
T h e normalizing factors £ for u are readily found. Since \ A s is integral , 

£<*> becomes (27r)~1/2. Eq . 6 of Section 1 gives 

fp = 27r(M/A)1/2 ; & = 2 * V / i / * ) 1 / 2 ( 3 a ) - 1 / 6 

1 d E 1 d E 
where J\f* is normalized to A^2 = r — A A 2 and K to A?i = -—-AXi, as in 

b dX2 b aXi 
(6b). T h e normalizing factor thus becomes 

f = (ix/h)2^V2(3a)~^ (12/) 
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We can see now under what conditions the analysis of this section is applic­
able to the problem. The wave function which corresponds in energy to \p0 

has 

X=-X 0 =-M 2 (2W^) 4 

Since 
X 2 ^ 0 , X3^0, Xi<-Xo 

Hence the argument y of K vanishes at a point £o=^Xo/a; for z<z0l y is 
real. Hence if we choose the field small enough, ^\{VQ%) will be, in the neigh­
borhood of the atom, as small as we want; conversely ^o will be very small 
where ^(Vox) is large. e0 can therefore be made very small, so that eq. (7) can 
be interpreted without ambiguity. Furthermore we can use (10a) to esti­
mate the second order of cascade. For the essential part of the integral 
(8a) comes from values of X for which the zero of y lies close to the nucleus. 
For small field this corresponds to a very short v range, and in this range 
the integrand does not in general change sign. 

The matrix components of Hx and H0Hi vanish when AXs + O. We are in­
terested in them only for X= — X0, so that Ai = —X0—X2, and the matrix 
components are functions of X2 alone. We can thus find, in accordance with 
(7) and (10a), AiV(r,X2) and we can get the total ionization by integration; 

AN(T)= f dv2AN(T,\2) (13) 
J o 

The necessary matrix components thus become 

#x(X2) = -2«FfWa)(ir /a) 1 / 2 (14) 

#o#i(X2) = 2eV^/a) (T/O) 1/2 

pdPJ0{p\21/2) I zdz<r<lia"'*+WK(y) (14a) 
0 J - o o 

with 

M2 pdpJoipW*) f 8<fe<r-(1/a)(,,'+',)£(7)/G»*+p,)1/ 

0 •/-oo 

We may estimate these integrals as follows: 
We have in the first place 

Mi=-[a/a(i/a)]M2 (15) 

so that it is enough to find the /x2. Now we can see at once that /x2 will be 
largest for small values of X2, and that, for small a, it falls off rapidly as X2 

increases; for the value of g-iM^+p2) 2 at 7 = 0 becomes much smaller, as 
does that of K(y) at z = 0, as X2 grows. But 

f zdze-\z"a • K(y) + a\2
112 f 

J —oo J —o. 
(16) 

dpe-«M^+W • Ji(pX2
1'2) • K(y) L 
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and since Jt (0) = 0 we may neglect the second term. (The corresponding term 
in IJLI is also negligible). 

The integral with respect to z is easy to estimate. For, from the properties 
of K it follows that the main part of the integral is contributed by the stretch 
Z^ZQ = X o + X 2 / a : 

y,2~a I z&zerW*' K{y) (16a) 
• J — oo 

Before we evaluate this, we can show that /X2 is negligible compared to /xi. 

Mi-a f z\ z\ dze-\*"a • K(y)+a2 f zdzerW'* • K(y) (16b) 

The term with \z\ is obviously large for small ce. In this case therefore the 
cascade effect proves unimportant compared to the direct transition. For 
small a and X2 the second term in (16b) yields 

M l ~ a T e - w ^ ^ ^ 1 2 • (Xo+X2)
9/1V-11/8 (17) 

r=29^-3/4r(3/4)/r(i/2)r(i5/4) 
In (13) this gives, with (14a) and (12j) and neglecting higher powers of a 

AN(T) = ( r / 2 4 ) ( h l m ) o r ^ a ^ e ~ ^ ^ ^ • T (18) 

which is the required result. 
The rate at which a field of 1 volt per cm dissociates a hydrogen atom is 

thus l/10lol° per sec. The true resistance of 1 cm3 of gas at 0,001 mm in this 
field is about 10lol° ohms. The values of the field for which the dissociation 
becomes appreciable are of the order of 

F~5X107*. s.u. 

which is about a tenth of the field which makes the classical Bohr orbit un­
stable. 

The effect increases very rapidly with a drop in the ionization potential 
of the atom, so that we should expect it to be particularly marked for certain 
metallic atoms at the surface of a conductor. The aeona effect, or pulling of 
electrons out of metal by fields of the order of 10 6e. s. u., is probably to be 
accounted for in this way.13a 

The importance of effects of the kind here considered is, however, that 
they restore to the atom some of the classical instability which was destroyed 
by the quantum conditions. For instance we can now understand a little 
better the mechanism of metallic conduction. The ionization potential of 
metallic atoms is characteristically low, so that the valence electrons will be 

13a This is confirmed by the fact, that when one uses the data of R. A. Millikan and C. 
Eyring, This Journal, 27, p. 55, Fig. 2, 1926, to plot the reciprocal of the field against the 
logarithm of the current minus one fourth the logarithm of the field, the points so obtained 
lie on a straight line. For this result follows from (18). 
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pulled out easily by the fields of neighboring atoms, (and, to a less extent, 
by external fields). If the probability of ionization is large, we shall no longer 
be justified in associating an electron with a single ion, and in this sense the 
valence electrons will be free. We have seen that this probability is greatly 
decreased if the threshold that the electron must clear is raised. If, therefore, 
the atoms of the metal are separated, e.g. by heat or by distortion, the pas­
sage of the electrons through the metal will be greatly hindered. It is known14 

that one can give a fairly satisfactory account of metallic conduction, if one 
assumes that it is the "gaps" in the atomic lattice which account for the 
resistance of the metal. 

The transitions involved in a chemical reaction are of the kind considered 
in this section. In particular, one can easily write down the probability that 
an electron will be captured from a hydrogen atom by a passing a-particle; 
but the integrals which occur are awkward to evaluate. 
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14 P. W. Bridgmar Rap. du Con. Solvay, Bruxelles, 1924. 


